Skip to content

W1 Limits and Continuity

NOTATIONS

Standard Abbreviations

SymbolWhat it means
|such that/given that
\forallfor all
\existsthere exists
\equivequivalent to
i.e\textmd{i.e}that is
\approxapproximate
\llmuch smaller than

Standard Notation for Set of Numbers

SymbolWhat it means
N\mathbb{N}Natural/Counting Numbers
Z\mathbb{Z}Integers
Q\mathbb{Q}Rational Numbers
(can be expressed in fraction)
R\mathbb{R}Real Numbers
C\mathbb{C}Complex Numbers
R2\mathbb{R^2}2 dimentional plane (x,y)
R3\mathbb{R^3}3 dimensional plane (x,y,z)

Standard Notation for Intervals

SymbolWhat it means
\inelement of
(a,b)(a,b)open interval
[a,b][a,b]closed interval
[a,b)[a,b)
(a,b](a,b]
partial open closed interval
\not including

More Standard Notations

  • Logarithms
    • natural logarithm: logx,logex,lnx\log x, \log_ex, \ln x
    • base 10 logarithm: log10x,ld x\log_{10} x, \textmd{ld } x
    • base 2 logarithm: log2x,lb x\log_2x, \textmd{lb } x
  • Inverse Trigonometric Functions
    • arcsinx,sin1x\arcsin x, \sin^{-1}x
    • arccosx,cos1x\arccos x, \cos^{-1}x
    • arctanx,tan1x\arctan x, \tan^{-1}x
    • arccsc x,csc1x\textmd{arccsc } x, \csc^{-1}x
    • arcsec x,sec1x\textmd{arcsec } x, \sec^{-1}x
    • arccot x,cot1x\textmd{arccot } x, \cot^{-1}x
  •     \implies implies
  •     \iff if and only if (iff)
  • \rightarrow approaches

LIMITS

Definition of limit of a function

  • limxaf(x)=L\lim_{x\rightarrow a} f(x)=L
  • in words: limit of f(x)f(x) as xx approaches aa is LL
  • limxaf(x)\lim_{x\rightarrow a} f(x) is not necessarily = to f(a)f(a)

\infty or -\infty is NOT a real number

  • N E V E R write limxaf(x)=±\lim_{x\rightarrow a} f(x)=\pm\infty (you will lose marks)
  • example f(x)=1x2f(x)=\frac{1}{x^2}, evaluate limx0f(x)\lim_{x\rightarrow 0} f(x)
    • f(x)f(x) is unbounded as xx approaches 00. Hence, f(x)f(x) cannot be arbitrarily close to any real number as xx approaches 0
    • This shows that limx0f(x)\lim_{x\rightarrow 0}f(x) DOES NOT EXIST

THEOREM limit of f(x)f(x) only exists if the right-hand limit and left-hand limit is the same

limxaf(x)=L    limxaf(x)=limxa+f(x)\boxed{\exists\lim_{x\rightarrow a}f(x)=L\iff \lim_{x\rightarrow a^-}f(x)=\lim_{x\rightarrow a^+}f(x)}

LIMIT LAWS

  • Let limxaf(x)=M\lim_{x\rightarrow a}f(x)=M, limxag(x)=N\lim_{x\rightarrow a}g(x)=N
#Rule NameRule
1Sum/Difference Rulelimxa[f(x)±g(x)]=M±N\lim_{x\rightarrow a}[f(x)\pm g(x)] = M\pm N
2Constant Multiple Rulelimxa[cf(x)]=cM\lim_{x\rightarrow a}[cf(x)]=cM
3Product Rulelimxa[f(x)g(x)]=MN\lim_{x\rightarrow a}[f(x)g(x)]=M\cdot N
4Quotient Rulelimxa[f(x)g(x)]=MN\lim_{x\rightarrow a}[\frac{f(x)}{g(x)}]=\frac{M}{N}
5Constant Rulelimxac=c\lim_{x\rightarrow a}c=c
6Power Rule Ilimxaxn=an\lim_{x\rightarrow a}x^n=a^n
limxax=a\lim_{x\rightarrow a}x=a
7Power Rule IIlimxa[f(x)]n=Mn\lim_{x\rightarrow a}[f(x)]^n=M^n
8Root Rulelimxa[f(x)n]=Mn\lim_{x\rightarrow a}[\sqrt[n]{f(x)}]=\sqrt[n]{M}

LIMIT TRICKS

STANDARD LIMITS TO INFINITY

  1. limx1xp=0,p>0\lim_{x\rightarrow\infty}\frac{1}{x^p}=0, p>0
  2. limxrx=0,0r<1\lim_{x\rightarrow\infty}r^x=0, 0\le r <1
  3. limx1eax=0,a>0\lim_{x\rightarrow\infty}\frac{1}{e^{ax}}=0, a>0

Terminology: Diverge/Converge

  • If limxaf(x)\lim_{x\rightarrow a}f(x) exists, we say that f(x)f(x) converges as xx approaches aa
  • If limxaf(x)\lim_{x\rightarrow a}f(x) does not exist, we say that f(x)f(x) diverges as xx approaches aa

SANDWICH THEOREM

FUNCTION GRAPHS (Review)

  • to help easily figure out standard limits

Line Tests

  • vertical line test: check if graph is function
  • horisontal line test: check if graph is one-to-one or many-to-one

Straight Lines

  • y=mx+c\boxed{y=mx+c}
    • Gradient: m=y2y1x2x1m=\frac{y_2-y_1}{x_2-x_1}
    • yy-intercept: cc
    • Angle of inclination: m=tanθ,0°θ<180°m=\tan\theta, 0\degree\le\theta<180\degree
    • Parallel: m1=m2m_1=m_2
    • Perpendicular: m1m2=1m_1m_2=-1

Parabolas/Quadratic

  • SF:y=ax2+bx+c\boxed{SF: y=ax^2+bx+c}
    • yy-intercept: cc
    • a>0a>0:
    • a<0a<0:
  • VF:y=a(xh)2+k\boxed{VF: y=a(x-h)^2+k}
    • Vertex: (h,k)(-h,k)
    • Axis of symmetry: x=hx=-h
  • FF:y=a(xp)(xq)\boxed{FF: y=a(x-p)(x-q)}
    • xx-intercepts: p,qp,q
  • Quadratic Formula
    • x=b±b24ac2ax=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

Cubics

  • y=ax3+bx2+cx+d\boxed{y=ax^3+bx^2+cx+d}

Absolute Value

  • y=x\boxed{y=|x|}

Hyperbolas

  • y=1x\boxed{y=\frac{1}{x}}

Exponential Functions

  • y=ax,where a>0\boxed{y=a^x, \textmd{where } a>0}

Logarithmic Functions

  • y=logax,where a>1\boxed{y=\log_ax,\textmd{where }a>1}

Semicircles

  • y=±r2x2\boxed{y=\pm\sqrt{r^2-x^2}}

Square Root Graph

  • y=x,where x0\boxed{y=\sqrt{x},\textmd{where }x\ge0}

CONTINUITY

Definition of continuity

  • function ff is continuous at x=ax=a if: limxaf(x)=f(a)\boxed{\lim_{x\rightarrow a}f(x)=f(a)}

Continuity Theorem 1

  • if ff and gg are continuous at x=ax=a then these are also continuous at x=ax=a:
  1. f+gf+g
  2. cfcf
  3. fgfg
  4. fg if g(x)0\frac{f}{g}\bold{\textmd{ if }g(x)\ne0}

Contiuity Theorem 2

  • if ff and gg are continuous at x=ax=a then gfg \circ f (aka g(f(x))g(f(x))) is continuous

Continuity Theorem 3

  • The following function types are continuous at every point in their domains:
  1. polynomials
  2. trigonometric functions
    • sin(x),cos(x)\sin(x), \cos(x)
    • tan(x),sec(x);x±π2,±3π2,...\tan(x), \sec(x); x\ne\pm\frac{\pi}{2},\pm\frac{3\pi}{2}, ...
    • cosec(x),cot(x);x±π,±2π\cosec(x),\cot(x); x\ne\pm\pi,\pm2\pi
    • arcsin(x),arccos(x);x[1,1]\arcsin(x),\arccos(x);x\leftarrow[-1,1]
    • arctan\arctan
  3. exponential functions
    • axa^x for a>0a>0
  4. logarithm functions
    • logax\log_ax for a>0,x>0a>0,x>0
  5. nthn^{th} root functions
    • xn\sqrt[n]{x} for n{2,3,4,...},x0n\in\{2,3,4,...\},x\ge0
  6. hyperbolic functions
    • sinh(x),cosh(x),tanh(x),sech(x)\sinh(x),\cosh(x),\tanh(x),\textmd{sech}(x)
    • cosech(x),coth(x)arccosh(x);x0\textmd{cosech}(x),\textmd{coth}(x)\textmd{arccosh}(x); x\ne0
    • arcsinh(x)\textmd{arcsinh}(x)
    • arctanh(x),x(1,1)\textmd{arctanh}(x), x\in(-1,1)
    • arccosh(x);x1\textmd{arccosh}(x); x\ge1
    • arcsech(x);x1\textmd{arcsech}(x); x\le1
    • arccoth(x);x(,1)(1,)\textmd{arccoth}(x); x\in(-\infty,-1)\cup(1,\infty)