Skip to content

W2 L'Hopital's Rule, Sequences, Limits of Sequences and Series

PRACTICE PRACTICE PRACTICE calculating limits and suing limit laws - no practice = fail - so P R A C T I C E (using problem booklet and textbook)

DIFFERENTIABILITY

Definition of derivative

  • Let f:Rโ†’Rf:\R\rightarrow\R be a real-valued function. The derivate of ff at x=ax=a is defined by:
    • fโ€ฒ(a)limโกhโ†’0f(a+h)โˆ’f(a)h\boxed{f'(a)\lim_{h\rightarrow0}\frac{f(a+h)-f(a)}{h}}
    • The function ff is differentiable at x=ax=a is this limit exists
  • Geometrically, ff is differentiable at x=ax=a if the graph y=f(a)y=f(a) has a tanget line given by:
    • yโˆ’f(a)=fโ€ฒ(a)(xโˆ’a)\boxed{y-f(a)=f'(a)(x-a)}
    • whihc gives a good approximation to grpah near x=ax=a
    • If ff is differentiable at x=ax=a, then ff is continuous at x=ax=a

Lโ€™Hopitalโ€™s Rule

  • limโกxโ†’af(x)g(x)=limโกxโ†’afโ€ฒ(x)gโ€ฒ(x),gโ€ฒ(x)โ‰ 0\boxed{\lim_{x\rightarrow a}\frac{f(x)}{g(x)}=\lim_{x\rightarrow a}\frac{f'(x)}{g'(x)},g'(x)\neq0}
  • if the limit involving the derivatives exists
  • Lโ€™Hopitalโ€™s Rule also holds when xx approaches infinity
  • apply if โˆžโˆž\frac{\infty}{\infty} or 00\frac{0}{0}

SEQUENCES

Definition of sequence

  • A sequence is a function f:Nโ†’Rf:\N\rightarrow\R\ C\mathbb{C}\etc.
  • It can be thought of as an ordered list of real numbers
  • if you change places of elements, it is a different sequence - because different order

Definition of limit of sequence

  • A sequence an{a_n} has the limit LL if ana_n can be made arbitrarily close to LL by making nn sufficiently large
  • limโกnโ†’โˆžan=L\boxed{\lim_{n\rightarrow\infty}a_n=L}
  • or anโ†’La_n\rightarrow L as nโ†’โˆžn\rightarrow\infty
  • If the limit exists we say that the sequence converges.
  • Otherwise, we say that the sequences diverges
  • If it exists, LL must be a unique finite real number

Theorem

Sequences Limit Laws

  • Let an{a_n} and bn{b_n} be sequences of real numbers and cโˆˆRc\in\R a constant
  • If limโกnโ†’โˆžan\lim_{n\rightarrow\infty}a_n and limโกnโ†’โˆžbn\lim_{n\rightarrow\infty}b_n
  1. limโกnโ†’โˆž[an+bn]=limโกnโ†’โˆžan+limโกnโ†’โˆžbn\lim_{n\rightarrow\infty}[a_n+b_n]=\lim_{n\rightarrow\infty}a_n+\lim_{n\rightarrow\infty}b_n
  2. limโกnโ†’โˆž[can]=climโกnโ†’โˆžan\lim_{n\rightarrow\infty}[ca_n]=c\lim_{n\rightarrow\infty}a_n
  3. limโกnโ†’โˆž[anbn]=limโกnโ†’โˆžanร—limโกnโ†’โˆžbn\lim_{n\rightarrow\infty}[a_nb_n]=\lim_{n\rightarrow\infty}a_n\times\lim_{n\rightarrow\infty}b_n
  4. limโกnโ†’โˆžlimโกnโ†’โˆžanlimโกnโ†’โˆžbn\lim_{n\rightarrow\infty}\frac{\lim_{n\rightarrow\infty}a_n}{\lim_{n\rightarrow\infty}b_n} provided limโกnโ†’โˆžbnโ‰ 0\lim_{n\rightarrow\infty}b_n\neq0;bnโ‰ 0b_n\neq0 for sufficiently large nn
  5. limโกnโ†’โˆžc=c\lim_{n\rightarrow\infty}c=c

Sequences Sandwich theorem

  • Let an,bn{a_n},{b_n} and cn{c_n} be sequences of real numbers
  • If anโ‰คcnโ‰คbna_n\leq c_n\leq b_n for all n>Nn>N for some NN, and
  • limโกnโ†’โˆžan=limโกnโ†’โˆžbn=L\lim_{n\rightarrow\infty}a_n=\lim_{n\rightarrow\infty}b_n=L
  • then
  • limโกnโ†’โˆžcn=L\lim_{n\rightarrow\infty}c_n=L

Standard Limits

#Standard LimitSequence Condition
nn
Function Condition
xx
1limโกnโ†’โˆž1np=0\lim_{n\rightarrow\infty}\frac{1}{n^p}=0p>0p>0p>0p>0
2limโกnโ†’โˆžrn=0\lim_{n\rightarrow\infty}r^n=0$r<1r<1 0โ‰คr<10\leq r<1
3limโกnโ†’โˆža1n=1\lim_{n\rightarrow\infty}a^{\frac{1}{n}}=1a>0a>0a>0a>0
4limโกnโ†’โˆžn1n=1\lim_{n\rightarrow\infty}n^{\frac{1}{n}}=1--
5limโกnโ†’โˆžann!=0\lim_{n\rightarrow\infty}\frac{a^n}{n!}=0a\in\RโŒ
6limโกnโ†’โˆžlogโกnnp=0\lim_{n\rightarrow\infty}\frac{\log n}{n^p}=0p>0p>0
7limโกnโ†’โˆž(1+an)n=ea\lim_{n\rightarrow\infty}(1+\frac{a}{n})^n=e^aa\in\Ra\in\R
8limโกnโ†’โˆžnpan=0\lim_{n\rightarrow\infty}\frac{n^p}{a^n}=0pโˆˆR,a>1p\in\R,a>1pโˆˆR,a>1p\in\R,a>1

Order of Heirarchy

  • The order hierarchy can be used to help identify the largest term in an expression:
  • (logโกn)qโ‰ชnpโ‰ชanโ‰ช(n!)qโ‰ชelnโก2;q,p>0,a>1(\log n)^q\ll n^p\ll a^n\ll (n!)^q\ll e^{\ln^2} ; q,p>0,a>1
  • logarithmic growth โ‰ช\ll algebraic growth โ‰ช\ll exponential growth โ‰ช\ll factorial growth

When to change discrete variable nn to real variable xx

  1. before applying Lโ€™Hopitalโ€™s Rule
  2. before applying the continuity theorem

SEQUENCE OF PARTIAL SUMS

  • Adding terms of a sequence together:
    • s1=a1s_1=a_1
    • s2=a1+a2s_2=a_1+a_2
    • โ€ฆ
    • sn=a1+a2+...+ans_n=a_1+a_2+...+a_n
  • The sequence of partial sums sn{s_n} may or may not converge
  • If it does converge: S=limโกnโ†’โˆžsn=limโกnโ†’โˆž(a1+a2+...+an)S=\lim_{n\rightarrow\infty}s_n=\lim{n\rightarrow\infty}(a_1+a_2+...+a_n)

SERIES

  • Series with ana_n denoted by the sum:
    • โˆ‘n=1โˆžan\sum_{n=1}^\infty a_n
  • IF limโกnโ†’โˆžsn\lim_{n\rightarrow\infty}s_n exists: Series converges
  • OTHERWISE: Series diverges

SEQUENCES VS SERIES

PROPERTIES OF SERIES

  • IF โˆ‘n=1โˆžan\sum_{n=1}^\infty a_n and โˆ‘n=1โˆžbn\sum_{n=1}^\infty b_n converges
  • THEN โˆ‘n=1โˆž(an+bn)\sum_{n=1}^\infty (a_n+b_n) converges
    • โˆ‘n=1โˆž(an+bn)=โˆ‘n=1โˆžan+โˆ‘n=1โˆžbn\sum_{n=1}^\infty (a_n+b_n) = \sum_{n=1}^\infty a_n + \sum_{n=1}^\infty b_n
  • AND โˆ‘n=1โˆž(can)\sum_{n=1}^\infty (ca_n) converges
    • โˆ‘n=1โˆž(can)=cโˆ‘n=1โˆžan\sum_{n=1}^\infty (ca_n)=c\sum_{n=1}^\infty a_n

GEOMETRIC SERIES

  • โˆ‘n=1โˆžarn=a1โˆ’r\sum_{n=1}^\infty ar^n=\frac{a}{1-r}
  • IF โˆฃrโˆฃ<1|r|<1: converges
  • IF โˆฃrโˆฃโ‰ฅ1|r|\ge1: diverges

HARMONIC P SERIES

  • โˆ‘n=1โˆž1np\sum_{n=1}^\infty\frac{1}{n^p}
  • IF p>1p>1: converges
  • IF pโ‰ค1p\le1: diverges

DIVERGENCE TEST

  • โˆ‘n=1โˆžan\sum_{n=1}^\infty a_n
  • IF limโกnโ†’โˆžanโ‰ 0\lim_{n\rightarrow\infty}a_n\ne0: diverges
  • IF limโกnโ†’โˆžan=0\lim_{n\rightarrow\infty}a_n=0: inconclusive

COMPARISON TEST

  • โˆ‘n=1โˆžan\sum_{n=1}^\infty a_n and โˆ‘n=1โˆžbn\sum_{n=1}^\infty b_n are positive term series
  • IF anโ‰คbna_n\le b_n for all nn AND โˆ‘n=1โˆžbn\sum_{n=1}^\infty b_n converges: โˆ‘n=1โˆžan\sum_{n=1}^\infty a_n converges
  • IF anโ‰ฅbna_n\ge b_n for all nn AND โˆ‘n=1โˆžbn\sum_{n=1}^\infty b_n diverges: โˆ‘n=1โˆžan\sum_{n=1}^\infty a_n diverges
  • compare given series with geometric/harmonic p series
  • HOW TO GET bnb_n:
    • find fastest growing terms in numerator and denominator
    • divide numerator and denominator by their respective fastest growing terms
    • see if the result is similar to geometric/harmonic p series
    • Ed answer:

RATIO TEST

  • โˆ‘n=1โˆžan\sum_{n=1}^\infty a_n & L=limโกnโ†’โˆžan+1anL=\lim_{n\rightarrow\infty}\frac{a_{n+1}}{a_n}
  • IF L<1L<1: converges
  • IF L>1L>1: diverges
  • IF L=1L=1: inconclusive
  • usually for:
    • exponents
    • factorials