Even/Odd Functions
- Even Function
- f(−x)=f(x)
- symmetrical over y-axis
- Odd Function
- f(−x)=−f(x)
- flipped over y and x axis
Hyperbolic Functions
| graph | function | domain(x) | range(y) |
|---|
 | sinhx=2ex−e−x | R | R |
 | coshx=2ex+e−x | R | [1,∞] |
 | tanhx=coshxsinhx=ex+e−xex−e−x | R | (−1,1) |
Reciprocal Hyperbolic Functions
| graph | function | domain(x) | range(y) |
|---|
 | csch x=sinhx1=ex−e−x2 | R \ {0} | R \ {0} |
 | sech x=coshx1=ex+e−x2 | R | (0,1] |
 | cothx=sinhxcoshx | (−∞,0)∪(0,∞) | (−∞,−1)∪(1),∞) |
| | | |
Inverse Hyperbolic Functions
Derivation: Derivation of Inverse Hyperbolic Functions
-
arcsinh u=log(u+u2+1)dxdu
-
arccosh u=log(u+u2−1)dxdu
-
arctanh u=31log(1−u1+u)dxdu
-
arccsch u=−∣u∣1+u21dxdu
-
arcsech u=−u1−u21dxdu
-
arccoth u=1−u21dxdu
Inverse Reciprocal Hyperbolic Functions
- tanhx=coshxsinhx
- sinh(x+y)=sinhxcoshy+coshxsinhy
- cosh(x+y)=coshxcoshy+sinhxsinhy
- sinh(x−y)=sinhxcoshy−coshxsinhy
- cosh(x−y)=coshxcoshy=sinhxsinhy
- sinh(2x)=2sinh(x)cosh(x)
- cosh(2x)=cosh2(x)+sinh2(x)
- cosh(2x)=2cosh2(x)−1
- cosh(2x)=2sinh2(x)+1
Basic Identities
- cosh2(x)−sinh2(x)=1
- coth2(x)−1=cosech2(x)
- 1−tanh2(x)=sech2(x)
Derivatives
- dxd(sinhu)=coshu×dxdu
- dxd(cosh u)=sinhu×dxdu
- dxd(tanhu)=sech2u×dxdu
- dxd(csch u)=−csch u×dxdu
- dxd(sech u)=−sech utanhudxdu
- dxd(coth u)=−csch2udxdu
- dxd(arcsinh x)=x2+11
- dxd(arccosh x)=x2−11
- dxd(arctanh x)=1−x21