Skip to content

W3 Hyperbolic Functions

Even/Odd Functions

  • Even Function
    • f(x)=f(x)\boxed{f(-x)=f(x)}
    • symmetrical over yy-axis
  • Odd Function
    • f(x)=f(x)\boxed{f(-x)=-f(x)}
    • flipped over yy and xx axis

Hyperbolic Functions

graphfunctiondomain(xx)range(yy)
sinhx=exex2\sinh x=\frac{e^x-e^{-x}}{2}R\RR\R
coshx=ex+ex2\cosh x=\frac{e^x+e^{-x}}{2}R\R[1,][1,\infty]
tanhx=sinhxcoshx=exexex+ex\tanh x=\frac{\sinh x}{\cosh x}=\frac{e^x-e^{-x}}{e^x+e^{-x}}R\R(1,1)(-1,1)

Reciprocal Hyperbolic Functions

graphfunctiondomain(xx)range(yy)
csch x=1sinhx=2exex\textmd{csch }x=\frac{1}{\sinh x}=\frac{2}{e^x-e^{-x}}R\R \ {0}\{0\}R\R \ {0}\{0\}
sech x=1coshx=2ex+ex\textmd{sech }x=\frac{1}{\cosh x}=\frac{2}{e^x+e^{-x}}R\R(0,1]( 0, 1] \,
cothx=coshxsinhx\coth x=\frac{\cosh x}{\sinh x}(,0)(0,)(-\infty,0)\cup(0, \infty)(,1)(1),)(-\infty,-1)\cup(1), \infty)

Inverse Hyperbolic Functions

Derivation: Derivation of Inverse Hyperbolic Functions

  • arcsinh u=log(u+u2+1)dudx\textmd{arcsinh }u=\log (u+\sqrt{u^2+1})\frac{du}{dx}

  • arccosh u=log(u+u21)dudx\textmd{arccosh }u=\log (u+\sqrt{u^2-1})\frac{du}{dx}

  • arctanh u=13log(1+u1u)dudx\textmd{arctanh }u=\frac{1}{3}\log(\frac{1+u}{1-u})\frac{du}{dx}

  • arccsch u=1u1+u2dudx\textmd{arccsch }u=-\frac{1}{|u|\sqrt{1+u^2}}\frac{du}{dx}

  • arcsech u=1u1u2dudx\textmd{arcsech }u=-\frac{1}{u\sqrt{1-u^2}}\frac{du}{dx}

  • arccoth u=11u2dudx\textmd{arccoth }u=\frac{1}{1-u^2}\frac{du}{dx}

Inverse Reciprocal Hyperbolic Functions

Hyperbolic Formulae

  • tanhx=sinhxcoshx\tanh x=\frac{\sinh x}{\cosh x}

Sum/Difference Formulae

  • sinh(x+y)=sinhxcoshy+coshxsinhy\sinh(x+y)=\sinh x\cosh y+\cosh x\sinh y
  • cosh(x+y)=coshxcoshy+sinhxsinhy\cosh(x+y)=\cosh x\cosh y+\sinh x\sinh y
  • sinh(xy)=sinhxcoshycoshxsinhy\sinh(x-y)=\sinh x\cosh y-\cosh x\sinh y
  • cosh(xy)=coshxcoshy=sinhxsinhy\cosh(x-y)=\cosh x\cosh y=\sinh x\sinh y

Double angle Formulae

  • sinh(2x)=2sinh(x)cosh(x)\sinh(2x)=2\sinh(x)\cosh(x)
  • cosh(2x)=cosh2(x)+sinh2(x)\cosh(2x)=\cosh^2(x)+\sinh^2(x)
  • cosh(2x)=2cosh2(x)1\cosh(2x)=2\cosh^2(x)-1
  • cosh(2x)=2sinh2(x)+1\cosh(2x)=2\sinh^2(x)+1

Basic Identities

  • cosh2(x)sinh2(x)=1\cosh^2(x)-\sinh^2(x)=1
  • coth2(x)1=cosech2(x)\coth^2(x)-1=\textmd{cosech}^2(x)
  • 1tanh2(x)=sech2(x)1-\tanh^2(x)=\textmd{sech}^2(x)

Derivatives

  • ddx(sinhu)=coshu×dudx\frac{d}{dx}(\sinh u)=\cosh u \times\frac{du}{dx}
  • ddx(cosh u)=sinhu×dudx\frac{d}{dx}(\textmd{cosh }u)=\sinh u \times\frac{du}{dx}
  • ddx(tanhu)=sech2u×dudx\frac{d}{dx}(\tanh u)=\textmd{sech}^2u \times\frac{du}{dx}

  • ddx(csch u)=csch u×dudx\frac{d}{dx}(\textmd{csch }u)=-\textmd{csch }u\times\frac{du}{dx}
  • ddx(sech u)=sech utanhududx\frac{d}{dx}(\textmd{sech }u)=-\textmd{sech }u\tanh u\frac{du}{dx}
  • ddx(coth u)=csch2ududx\frac{d}{dx}(\textmd{coth }u)=-\textmd{csch}^2u\frac{du}{dx}

  • ddx(arcsinh x)=1x2+1\frac{d}{dx}(\textmd{arcsinh }x)=\frac{1}{\sqrt{x^2+1}}
  • ddx(arccosh x)=1x21\frac{d}{dx}(\textmd{arccosh }x)=\frac{1}{\sqrt{x^2-1}}
  • ddx(arctanh x)=11x2\frac{d}{dx}(\textmd{arctanh }x)=\frac{1}{1-x^2}