Skip to content
- z=x+iy, where x,y∈R
- x=Re(z): reeal part of z
- y=Im(z): imaginary part of z
- i2=−1
- Cartesian representation:
- r(cosθ+isinθ)
- r=∣z∣=x2+y2
- tanθ=xy
- cosθ=x2+y2x
- sinθ=x2+y2y
Principal Argument, P.V.arg(z)
- −π<P.V.arg(z)≤π
Complex Exponential
- eiθ=cosθ+isinθ
- Polar form: z=reiθ
Properties of Complex Exponential
- ei0=1
- eiθeiΦ=ei(θ+Φ)
- If z=r1eiθ and w=r2eiΦ then:
- zw=r1r2ei(θ+Φ)
- wz=r2r1ei(θ−Φ)
De Moivre’s Theorem
- zn=(reiθ)n=rneinθ
- z=reiθ
- n is a positive integer
- cosθ=21(eiθ+e−iθ)
- sinθ=2i1(eiθ−e−iθ)
- connection with hyperbolic trigonometric functions:
- cosh(iθ)=21(eiθ+e−iθ=cosθ
- sinh(iθ)=2i1(eiθ−e−iθ=sinθ
Differentiation via Complex Exponential
Integration via Complex Exponential