Skip to content

W3 Circular Motion and Energy

Calculator: only Casio FX82

  • the only calculator permitted in University of Melbourne exams if the Casio FX82 (you have it)

Friction

Drag

  • a resistive force on an object moving in a fluid (gas or liquid)
  • v    D\uparrow v \implies \uparrow \vec{D}
  • D=12CρAv2\boxed{\vec{D}=\frac{1}{2}C\rho Av^2}
    • CC = drag coefficient (often C=12C=\frac{1}{2})
    • ρ\rho = density of fluid (for air: 1.29kg/m31.29kg/m^3)
    • vv = velocity
    • AA = cross-sectional area of object/area that faces the wind
  • AA:

Terminal Velocity

  • when aa (acceleration) = 0
  • can be derived from drag formula
  • vterm=2mgCρA\boxed{v_{term}=\sqrt{\frac{2mg}{C\rho A}}}
    • CC = drag coefficient (often C=12C=\frac{1}{2})
    • ρ\rho = density of fluid (kg/m3kg/m^3);for air: 1.29kg/m31.29kg/m^3
    • vv = velocity (m/sm/s)
    • AA = cross-sectional area of object/area that faces the wind (m2m^2)

Uniform Circular Motion

arc length

  • l=rθ\boxed{l=r\theta}
    • ll = arc length (mm)
    • θ\theta = angle in (radrad)
    • rr = radius (mm)

velocity

  • v=v=ΔxΔt=2πrT=ωr\boxed{|\vec{v}|=v=\frac{\Delta x}{\Delta t}=\frac{2\pi r}{T}=\omega r}
  • speed of an obejct moving in circular motion is constant but velocity is always changing
    • because of change of direction but no change in magnitude
  • Period and Frequency
    • TT = period (ss); time taken for object to go around the circle once
    • ff = frequency (HzHz or s1s^{-1}) = 1T\frac{1}{T}
  • Angular
    • ω\omega = angular velocity = 2πT\frac{2\pi}{T} (rad/srad/s)
    • α\alpha = angular acceleration = ΔωΔt\frac{\Delta \omega}{\Delta t}

centripetal (net) acceleration

  • constantly changing - always points to center of the circle
  • ac=a=v2r\boxed{\vec{a_c}=a=\frac{v^2}{r}}
    • aca_c

centripetal net force

  • Fnet=mv2r\boxed{\vec{F}_{net}=\frac{mv^2}{r} }
    • Fnet\vec{F}_{net} = centripetal net force; toward the center of the circle
    • mm = mass (kgkg)
    • vv = velocity (m/s2m/s^2)
    • rr = radius (mm)

Torque

  • τ=rFsinϕ\boxed{\tau=rF\sin\phi}
    • τ\tau = torque (NN)
    • rr = distance from axis of rotation to point where force is applied (mm)
    • FF = Force applied (NN)
    • ϕ\phi = angle between foce and line drawn from axis to point where force is applied (°\degree or radrad)
      • maximum when 90°90\degree
    • ;

angular acceleration

  • α=τI=τmr2\boxed{\alpha=\frac{\tau}{I}=\frac{\tau}{mr^2}}
    • α\alpha = angular acceleration
    • τ\tau = torque (NN)
    • II = moment of inertia = mr2mr^2

Static Equilibrium

  • net force is zero
    • Fnet=0F_{net}=0
  • net torque about any axis is zero
    • τnet=0\tau_{net}=0

Newton’s law of gravitation

  • F1 on 2=F2 on 1=Gm1m2r2\boxed{F_{\textmd{1 on 2}} = F_{\textmd{2 on 1}}=\frac{Gm_1m_2}{r^2}}
    • G=6.67×1011Nm2kg2G=6.67\times10^{-11}Nm^2kg^{-2}

Orbits

  • v=Gm2r\boxed{v=\sqrt{\frac{Gm_2}{r}}}

Weightlessness in orbit

Conservation laws in physics

  • conservation of mass
  • conservation of momentum
  • ⚠️ conservation of energy
  • conservation of angular momentum

Collissions

  • a short-duration interaction between two objects

Impulse and Linear Momentum

  • Impulse
    • area under force-time graph
    • J=titfFdt=FavΔt\boxed{J=\int_{t_{i}}^{t_{f}}Fdt=F_{av}\Delta t}
  • Linear momentum
  • p=mv\boxed{\vec{p}=m\vec{v}}
    • p\vec{p} = momentum (kgm/skg m/s)
    • mm = mass (kgkg)
    • v\vec{v} = velocity (m/sm/s)
  • Impulse-momentum theorem
    • J=FavΔt=mΔc=Δp\boxed{\vec{J}=\vec{F}_{av}\Delta t=m\Delta\vec{c}=\Delta\vec{p}}

Conservation of Momentum

  • Fnet ext=dPdt\boxed{\vec{F}_{\textmd{net ext}}=\frac{d\vec{P}}{dt}}
  • isolated: if Fnet ext=0\vec{F}_{\textmd{net ext}}=0, total momentum is conserved (ie. has a constant value)
  • Fnet extave=ΔPΔtF_{\textmd{net ext}_{ave}}=\frac{\Delta P}{\Delta t}
  • ΔP=FnetΔt\Delta P = F_{net}\Delta t